The Blocking of c-Met Signaling Induces Apoptosis through the Increase of p53 Protein in Lung Cancer
نویسندگان
چکیده
PURPOSE c-Met is an attractive potential target for novel therapeutic inhibition of human cancer, and c-Met tyrosine kinase inhibitors (TKIs) are effective growth inhibitors of various malignancies. However, their mechanisms in anticancer effects are not clear. In the present study, we investigated the possibility that blocking c-Met signaling induces p53-mediated growth inhibition in lung cancer. MATERIALS AND METHODS The growth inhibitory effects of c-Met TKI (SU11274) on lung cancer cells and a xenograft model were assessed using the MTT assay, flow cytometry, and terminal deoxyribonucleotide transferase-mediated nick-end labeling staining. The role of p53 protein in the sensitivity of c-Met TKI (SU11274) was examined by Western blot analysis and immunohistochemistry. RESULTS SU11274 significantly induced apoptosis in A549 cells with wild-type p53, compared with that in Calu-1 cells with null-type p53. SU11274 increased p53 protein by enhancing the stability of p53 protein. Increased p53 protein by SU11274 induced up-regulation of Bax and PUMA expression and down-regulation of Bcl-2 expression, subsequently activating caspase 3. In p53 knock-out and knock-in systems, we confirmed that SU11274 caused apoptosis through the p53-mediated apoptotic pathway. Likewise, in the A549 xenograft model, SU11274 effectively shrank tumor volume and induced apoptosis via increased p53 protein expression. Blocking c-Met signaling increased the level of p53 protein. CONCLUSION Our finding suggested that p53 plays an important role in SU11274-induced apoptosis, and p53 status seems to be related to the sensitivity to SU11274 in lung cancer.
منابع مشابه
Epigallocatechin-3-Gallate Induces Apoptosis through Up-regulation of Bax and Down-regulation of Bcl-2 in Prostate Cancer Cell Line
Background and Aims: Epigallocatechin-3-gallate (EGCG) is a polyphenolic compound from green tea, which its anticancer effects on many types of cancers have been confirmed, but the molecular mechanism by which EGCG induces apoptosis remains unknown. The aim of the present study was to investigate anti-proliferative properties and apoptotic signaling pathway of EGCG on PC3 human prostate cancer ...
متن کاملالقای آپوپتوز وابسته به p53 در ردهی سلولی لوسمی لنفوبلاستیک حاد پیشساز لنفوسیت B (NALM-6) توسط مولکول کوچک RITA
Background and Objective: The use of low-molecular-weight, nonpeptidic molecules that degrade the interaction between the p53 protein and its negative regulator MDM2 (Murine- double minute colon 2) is a new therapeutic strategy for treatment of various types of cancer. One of these agents is RITA (reactivation of p53 and induction of tumor cell apoptosis) which binds to p53 protein and inhibits...
متن کاملCelecoxib Treatment Alters p53 and MDM2 Expression via COX-2 Crosstalk in A549 Cells
Cyclooxygenase-2 (COX-2) has a pivotal role in the pathogenesis of the lung cancer. It is known that COX-2 negatively regulates the activity of a number of tumor suppressors, including p53. Consequently, inhibition of COX-2 signaling is anticipated to be a promising approach to stabilize p53 functionality. In this regard, we investigated the effect of COX-2 signaling blockade on p53 and COX-2 e...
متن کاملLong non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway
Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...
متن کاملEffects of combined 5-Fluorouracil and ZnO NPs on human breast cancer MCF-7 Cells: P53 gene expression, Bcl-2 signaling pathway, and invasion activity
Objective(s): The significant contribution of nanoparticles to cancer treatment has attracted therapeutic attention. The present study aimed to evaluate the synergistic effects of 5-fluorouracil (5-FU) and zinc oxide nanoparticles (ZnO NPs) as multimodal drug delivery on human breast cancer MCF-7 cells.Materials and Methods: In this in-vitro study, the impact of 5-FU and ZnO NPs in the sin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 44 شماره
صفحات -
تاریخ انتشار 2012